Like 3GET = 3!GET = 6GET.
1GET
2GET
3*2*1 GET
INFINITYGET
120GET
5040GET
0x9D80GET
362880GET
3628800GET
479,001,600GET
6,227,020,800GET
This thread sucks.
result = 1
for x = 2 to 15 do
result = result * x
end for
return result GET
20922789888000GET
6,402,373,705,700,000GET
1.216451 ~ 10^17
20! get
Solve.
2,432,902,008,176,640,000GET
1,124,000,727,777,607,600,000
25852 01673 88849 76640 000 get
620,448,401,733,239,200,000,000
15511210043331000000000000GET
2.09227*10^13GET
10,888,869,450,418,352,160,768,000,000GET
304,888,344,611,714,000,000,000,000,000GET
29! = 8385052954851748838440800000GET
>28! = 304888344611713860501504000000
>29! = 8841761993739701954543616000000
I guess we found the precision limit of calc.exe (27!)
30! = 265252859812191058636308480000000GET
Calculator.app FTW
8,222,838,654,200,000,000,000,000,000,000,000GET
Oh! That's even more wrong!
>>31 should be 8222838654177922817725562880000000
263130836933693530167218012160000000GET
Calculator programs just weren't ment handle numbers the big. I had to write a special program to do it. I'm now good up to at least 200!
86831337618811886495518194401280000000get
http://membres.lycos.fr/rsirdey/facttabl.htm
295232799039604140847618609643520000000GET
10,333,147,966,386,144,929,666,651,337,523,200,000,000GET
I have a TI-89 calculator that can handle up to 449!
also note that 35! contains 1337
295232799039604140847618609643520000000GET
13,763,753,091,226,345,046,315,979,581,580,902,400,000,000GET
>>36 is DQN
523022617466601111760007224100074291200000000GET
>>36 you should have refreshed before posting!
39!/38! GET
Who would think factorial thread was so popular?
815915283247897734345611269596115894272000000000GET
Whee!
815915283247897734345611269596115894272000000000GET
1405006117752879898543142606244511569936384000000000GET
60415263063373835637355132068513997507264512000000000GET
error
>>44 is fuckin' DQN, man.
1196222208654801945619631614956577150643837337600000000000GET
Just to show up >>32, I tried one of the Haskell programs found at
http://www.willamette.edu/~fruehr/haskell/evolution.html
Running the following program in Hugs, I can compute up to around 28925!. Beyond that, it crashes, presumably overflowing the C stack:
y f = f (y f)
fac = y (\f n -> if (n==0) then 1 else n * f (n-1))
By the way, 5502622159812088949850305428800254892961651752960000000000GET.
258623241511168180642964355153611979969197632389120000000000GET
This is much more fun than trying to memorize Pi!
sum(1/n!, n->inf)
eGET
inf-1GET
30414093201713378043612608166064768844377641568960512000000000000GET
Do I ‡GET yet?
inf on my calculator. :( 51 get
80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,000,000,000GET
Copying from my calculator is getting tiring...
Doing it in hex because it's shorter
0x9e90719ec722d0d480bb68bfa3f6a3260e8d2b749bb6da000000000000
0x‡
12696403353658275925965100847566516959580321051449436762275840000000000000GET
TL;DCGET
(GET)xGET(GET)
!GET
59*58*57*56*55*54*53*52*51*50*49*48*47*46*45*44*43*42*41*40*39*38*37*36*35*34*33*32*31*30*29*28*27*26*25*24*23*22*21*20*19*18*17*16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1GET
60!
I dont unterstand this thread.
61get!
62! =
0x10330899804331bad5ed1392f79479b1c5e4cb50335e3fef51115b9a6a00000000000000
teg78^01x9163807641611460044404513806289.1
CAN YOU FIGURE OUT MY SECRET CODE
1.268869321858841*10^89GET
8 ~ 10^90 (rounded)
PIGET
36471110918188685288249859096605464427167635314049524593701628500267962436943872000000000000000GET
248003554243683059960099
041856917158104739920135
536767237171073801822144
5712183296000000000000000
What number are you thinking of?
69! = 171122452428141311372468338881272839092270544893520369393648040923257279754140647424000000000000000
VERYLARGEGET